The main objective or goal of risk management is to identify the possible issues before they happen. Risk management includes two stages of the process – the first one is what risks exist in an investment, and the second one is handling or managing those risks in the best way.
Risk management makes sure that an organization or industry identifies and understands the risks to which it is exposed. Risk management also guarantees that the organization creates and implements an effective system to prevent losses or reduce the impact if a loss occurs.
Insurance companies need to manage a risk management system to recognize risk activities or events and change their claim rates before, and also, they can save a huge amount of money. Risk management has the ability to understand and as well as control that risk, this gives more confidence to insurance companies at the stage of decision making.
Every insurance company or organization has so many risks to manage at their organizational level, including underwriting, reinsurance, operational, marketing, and liquidity risks. Traditional risk management activities are outdated. Insurance companies hire few members as a risk management team; they evaluate documents after receiving loan applications, but this is not accurate based on FICO (Fair Isaac Corporation) score.
So insurance companies may end up with more losses due to the risks they faced than they desired. So insurance companies need to maintain more accurate results on the risk management system.
Nowadays, so many companies are starting to adopt Machine Learning or AI-based models to find and also prevent risk more accurately.
Insurance companies take more time in terms of days if they evaluate risk from new customers. And also, these tasks want more risk analysts for analyzing different types of risks.
AI-Based models will help companies by analyzing existing or past customer information and then applying it to new customers faster and with accurate results.
AI-Based risk management systems or models will allow insurance companies to attempt to prepare for the unexpected by reducing risks and as well as extra costs before they happen. Because AI-Based models have the ability to avoid potential risks, minimizing their impact. This will help insurance companies in the growth of the business.
AI-based Risk management systems can provide many advantages to insurance companies or agencies. For example
In this problem statement, also we have to collect or gather information about clients or customers from insurance agencies. This information or data may be collected from databases of organizations and documents submitted by clients while applying for insurance or claims. After collecting the data, we should extract data from all documents of individual customers. Now we have to create a dataset with all collected data from databases as well as documents.
After creating a dataset from different sources, that data will be sent to the annotation phase. In this phase, the annotator will perform two types of annotations on the data.
This stage wants annotators who are having knowledge of different insurance risks, possibilities of risks, etc. If the annotator doesn’t have the knowledge, they make mistakes that will lead to the model’s low performance.
In this problem statement also the annotation process will help the model to provide better performance. Based on annotated documents, models learn patterns to recognize risks and then manage them. Otherwise, models don’t know about customer documents like if documents have some particular features that belong to one risk. If documents have another set of features, then that belongs to another risk type.
All these kinds of information will be learned by models while training or building AI-Based models. We add this information to our raw data or extracted data to add value to our dataset through an annotation process.
After the annotation phase is completed, we will use that annotated data for data preprocessing. Here we have to apply different types of text preprocessing techniques to annotated data. Some of the text preprocessing techniques while doing this phase is tokenization, stemming, lemmatization, removing stop words, extra spaces, text normalization techniques, etc.
By the end of this stage, we will get valuable, as well as qualitative data to build better models.
In the development phase of the model for risk management, we will use preprocessed text. Our model aim is to identify the risks so that we can utilize NLP-based topic modeling techniques to identify top risks. This is the statistical model to identify abstract topics from the documents. And also a discovery group of words that leads to that particular topic. The most popular NLP techniques are Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) for topic analysis.
While building this risk management, there are different types of NLP techniques used like topic modeling, named entity recognition for recognizing entities like personal details, age, gender, etc. And for characterizing risk factors, we will use the POS (Parts-Of-Speech) tagger. Like we will use different types of techniques in this model building.
Part-of-speech (POS) tagging strategy is utilizing to filter the fascinating categories, semantic networks to recover semantic connections between phrases as concept instances, syntactic and semantic information to construct concept recognition heuristics applied to messages.
Entity recognition utilizes statistical modeling, neural networks, and regular expression pattern mapping with an end goal to separate and classify every entity or element.
This usefulness of Natural Language Processing (NLP) is capable of recognizing named entities, for example, people’s names, cities, urban areas, nations, areas, birth dates, and others.
Entity recognition can help proficiently recognize documents with privileged information or recognizable data, including social security and credit card numbers. Classifying these entities can reduce privacy risk and organize privilege reviews.
Sentiment analysis is the way toward extracting emotional data from various sorts of information. In risk management, sentiment analysis or opinion mining can assist organizations with seeing any abstract opinions of business, and make a technique as per risks or dangers may go over in business examination.
By using our trained risk management model, insurance agencies can know different information from new customers, such as identifying top risks from documents and effectiveness of each top risk and how to manage those risks, etc. nowadays, due to low knowledge of teams who are working on risk management in insurance agencies, companies lose huge amounts of money. By utilizing our trained model, companies can identify risks before they become more dangerous. So companies were able to prevent risks earlier so automatically, the companies’ economic growth gradually increased.
Subscribe to our Newsteller